Hypoxia-inducible factor induction by tumour necrosis factor in normoxic cells requires receptor-interacting protein-dependent nuclear factor kappa B activation.
نویسندگان
چکیده
Tumour necrosis factor alpha (TNF-alpha) binds to its receptor (TNFR1) and activates both death- and inflammation/survival-related signalling pathways. The inflammation and survival-related signalling cascade results in the activation of the transcription factor, nuclear factor kappa B (NF-kappa B) and requires recruitment of receptor-interacting protein (RIP) to TNFR1. The indispensable role of RIP in TNF-induced NF-kappa B activation has been demonstrated in RIP(-/-) mice and in cell lines derived from such mice. In the present study, we show that the TNF-alpha-induced accumulation of hypoxia-inducible factor 1 alpha (HIF-1 alpha) protein in normoxic cells is RIP-dependent. Exposing fibroblasts derived from RIP(-/-) mice to either cobalt or PMA resulted in an equivalent HIF-1 alpha induction to that seen in RIP(+/+) fibroblasts. In contrast, RIP(-/-) cells were unable to induce HIF-1 alpha in response to TNF-alpha. Further, transient transfection of NIH 3T3 cells with an NF-kappa B super-repressor plasmid (an inhibitor of NF-kappa B activation) also prevented HIF-1 alpha induction by TNF-alpha. Surprisingly, although HIF-1 alpha mRNA levels remained unchanged after induction by TNF, induction of HIF-1 alpha protein by the cytokine was completely blocked by pretreatment with the transcription inhibitors actinomycin D and 5,6-dichlorobenzimidazole riboside. Finally, TNF failed to induce both HIF-1 alpha, made resistant to von Hippel-Lindau (VHL), and wild-type HIF-1 alpha transfected into VHL(-/-) cells. These results indicate that HIF-1 alpha induction by TNF-alpha in normoxic cells is mediated by protein stabilization but is nonetheless uniquely dependent on NF-kappa B-driven transcription. Thus the results describe a novel mechanism of HIF-1 alpha up-regulation and they identify HIF-1 alpha as a unique component of the NF-kappa B-mediated inflammatory/survival response.
منابع مشابه
Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells
Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes. This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...
متن کاملAnti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells
Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes. This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...
متن کاملModulation of Lipopolysaccharide Stimulated Nuclear Factor kappa B Mediated iNOS/NO Production by Bromelain in Rat Primary Microglial Cells
Background: Microglial cells act as the sentinel of the central nervous system .They are involved in neuroprotection but are highly implicated in neurodegeneration of the aging brain. When over-activated, microglia release pro-inflammatory factors, such as nitric oxide (NO) and cytokines, which are critical in eliciting neuroinflammatory responses associated with neurodegenerative diseases. Thi...
متن کاملTissue Transglutaminase Constitutively Activates HIF-1α Promoter and Nuclear Factor-κB via a Non-Canonical Pathway
Constitutive activation of nuclear factor kappa B (NF-κB) has been linked with carcinogenesis and cancer progression, including metastasis, chemoresistance, and radiation resistance. However, the molecular mechanisms that result in constitutive activation of NF-κB are poorly understood. Here we show that chronic expression of the pro-inflammatory protein tissue transglutaminase (TG2) reprograms...
متن کاملThe Proinflammatory Cytokine Interleukin 1B and Hypoxia Cooperatively Induce the Expression of Adrenomedullin in Ovarian Carcinoma Cells through Hypoxia Inducible Factor 1 Activation
Adrenomedullin (ADM) is a potent hypotensive peptide produced by macrophages and endothelial cells during ischemia and sepsis. The molecular mechanisms that control ADM gene expression in tumor cells are still poorly defined. It is known, however, that hypoxia potently increases ADM expression by activation of the transcription factor complex hypoxia inducible factor 1 (HIF-1). Proinflammatory ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 370 Pt 3 شماره
صفحات -
تاریخ انتشار 2003